
[Asodiya, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [781]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

An Evolutionary Study of Software Matrices for Object Oriented Products
Anushree Asodiya*, Ashi Jain, Anurag Punde

* Computer Science & Engineering, Acropolis Institute of Technology & Research, Indore, India

Abstract
Increase in the use of technology leads in the development of much new software. As soft ware development is a

complex process, it is difficult to measure the software qualities and quantities. To measure the quality of developed

and developing soft ware’s in terms of efficiency, cost, maintenance, time, scalability etc various matrices are

proposed related to various constructs like class, couplings, cohesion, inheritance, information hiding,

polymorphism etc .It is often difficult to determine which metric is used in which area. There are 27 matrices

proposed for software measurement by various researchers which are used to measure the quality of products. The

goal is to achieve the objective, reproducible, quantifiable measurement. The basic purpose of our research is to

study various matrices in object oriented software development environment .in this paper we investigate the

matrices on class and couplings. They are firstly defined and examined on different code of languages.

Keywords: Software matrices.

 Introduction
Software development is not a process to develop

software only, but it is also about quality. As we

know software is a collection of number of programs,

so it is very difficult for a single developer to solve

such a large or complex problem occurs during

software development Sometimes implementation of

software becomes so large and complex too that is

not remains as writing codes only but it is also about

to follow some guidelines, writing documentation,

and writing unit test.[1] But unit test are not enough

we have to spot problematic area using matrices.

They tells us that our software follow our certain

standard. Some matrices tell us about software

quality and give us software quality assurance.

Software quality is field of study that describes the

desirable attribute of software product. There are two

approaches to measure software quality, first is defect

management approach and second is quality attribute

approach. The defect management approach is used

in counting and management of defects. Commonly

occurred

Defects are missed or misunderstood requirement,

Functional logic, timing, coding, desirable output,

maintenance etc. the quality attribute approach is

easily explained by fixed quality models like

ISO/IEC.

Software assurance is a part of license agreement of

most large organizations. Software assurance is

explained as "to measure of level of quality that

software is free from vulnerabilities, which is

intentionally or accidentally inserted at anytime

during the development of software. The main

objective of software assurance is that the processes,

procedures, and products used to produce software

contains all requirements and standards .SQA ensures

the Software Development process, which includes

processes such as software design, coding, reviews

of codes, software configuration management,

testing, release management ,etc.. SQA is all about

goals, commitments, abilities, activities,

measurements, and verifications.

Software quality can be measure using software

matrices. Now the question arise what is matrices? It

is defined as “STANDARDS OF

MEASUREMENT”. for example to measure the

physical quantity in physics we use centimeter ,kilo

gram ,etc as like as in computer science ,matrices are

used to measure the quantitative measure degree to

which a system ,system component and process

possess a given attribute. There are 22 matrices

known based on polymorphism, class coupling,

inheritance, etc. In this study we are mainly focusing

upon class and coupling matrices. Our study gives

you examined study of coding languages based on

class and coupling matrices.

http://www.ijesrt.com/

[Asodiya, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [782]

Matrices set & pragmatic data collection
The list of matrices that we have chosen for our study

is scheduled in table below. The matrices which we

have studied are based on class and couplings. A

class is to describe one or more objects in OOPS. [1,

2, 3, 4] All classes may consist of variable definitions

and methods that can be run by equivalent objects.

Coupling is a dominating technique for assessing

relationships among different components of

software. Coupling is possible, if any type of

connection or relationship exists between two

components. The matrices which are listed below are

briefly explained in our study.

S. No Name of Metrics
Object Oriented

aspects
Sources

1 Response for a class (RFC) Class [Chaidamber94]

2 Number of Attributes per Class (NOA) Class [Henderson 96]

3 Number of methods per Class (NOM) Class [Henderson 96]

4 Weighted Methods per Class (WAC) Coupling [Chaidamber94]

5 Couplings between Objects (CBO) Coupling [Chaidamber94

6 Data Abstraction Couplings (DAC) Coupling [Henderson 96]

7 Message passing Couplings (MPC) Coupling [Henderson 96]

8 Coupling Factor (CF) Coupling [Harrison98]

Matrices definition & applications
As we stated earlier that matrices are ‘Standards of

Measurement’. [5] In development of software, a

metric is the measurement of a attribute of a software

Performance or efficiency. A metric may be used

directly and sometimes as a component in

an algorithm. They are not only used in testing of

errors but they can also provide variety of

information on various aspects like software quality,

schedule of software project, functionality of

software and result they produce. The matrices

chosen for our study are class and couplings matrices.

A. CLASS MATRICES: In object oriented

programming class matrices are generally used

to give the definition of objects. In this section

we discussed four matrices. They measure the

size in terms of attributes and methods which

are integrated in a class.

I. Number of attributes per class (NOA): It

counts the total number of attributes which

are defined in a class. Figure 1 shows

departmental relationship system. The

number of attributes for department class is

2.therefore NOA =2 (department class)

II. Number of methods per class (NOM): it

counts number of methods that are in

defining a class. In figure 1 Number of

Methods for Student class is 3.therefore

NOM=3.

III. Weighted methods per class (WMC):

WMC measures the complexity of an

individual class. It is the summation of

complexities of all the methods in a class. It

is marker of the effort that is needed to

develop and maintain a class. Consider a

class A1,and methods M1,M2…….Mn.

suppose C1,C2……Cn are the complexities

of given class[]

WMC=∑ 𝑪𝒊𝒏
𝒊=𝟏

When C1,C2……Cn=1, then WMC=n, i.e. number of

methods in the class. In figure 1

http://www.ijesrt.com/

[Asodiya, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [783]

IV. Response for a class (RFC): RFC is the

interaction of the class methods with another

method. It is the sum of all the methods that

can be executed in response to the message

received by an object of a class and all

discrete methods are involved directly

within the class. In normal words RFC is the

“Number of Different Methods and

Constructors involved by a Class”. In

addition, all the methods which are inherited

are counted, but overridden methods are not

 RS=Ai ⋃ all j {Rij}

Where Ai= set of all methods in a class and

Ri=Rij=set of methods called by class.

In figure 1, class Department has two

functions get data and display.

B. COUPLING MATRICES: In simple

words coupling is joining of two things together.

In development of software, it is a degree by

which software components are dependent upon

each other. In heavily coupled, components are

totally dependent on each other. In loosely

coupled, components are independent to each

other. Coupling matrices decrease complexity,

reduce encapsulation. Potential reuse,

maintainability etc.

I. Coupling between Objects (CBO): CBO

of class is defined as count of number of

other classes to which it is coupled. Two

classes are called to be coupled if the

Department

Department_Code:(i
nt)

Department_Name:(S
tring)

getdata()

display()

Student

Student_name :(

String)

Student_id:(String)

Student_enroll_no:(

String)

Display()

Getdata()

Run()

Faculty

Faculty id:(String)

Faculty Name:(Sting)

Faculty Subject :(

String)

getdata()

display()

Run()

http://www.ijesrt.com/

[Asodiya, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [784]

methods and variables declared in one class

are used by the other class. In Figure2

Course class contains declaration of

instances of classes’ student and college.

The value of CBO for class Course is 2and

for student and college is zero.

II. Data Abstraction Coupling (DAC): Data

Abstraction is a procedure for creating new

data type suitable for the applications to be

programmed. It also provides the ability to

create user defined data types called as

Abstract Data types (ADTs).

a. Therefore,

b. DAC=number of ADTs defined in

a class.

c. In Figure 2 there are four ADTs in

class course i.e. student name,

student course, course name and

course code.

III. Massage passing coupling (MPC): MPC is

defined as the number of statements defines

in a class. Therefore, if two different

methods of a class A is used by same

method in class B, then MPC=2.In Figure

2,MPC value for class Course is four as

methods in class course calls

Student_name,Student_course,Course_name

,Course_code.

IV. Coupling Factor (CF): CF is defined as the

ratio of the maximum probable number of

couplings in the class to the actual number

of couplings not comes in to inheritance.

That is, CF counts the number of inter-class

communications. Coupling which is done

because of use of inheritance is not

integrated in CF because class is heavily

coupled with its associates through

inheritance.

a. CF=∑∑ [is_client (Ci,Cj)]

i. TC2-TC

Where TC is the total number of class. If no class are

coupled then CF=0%.If all class coupled then CF is

100%.

Student

Student_name:(String)

Student_roll no:(int)

Stuent_course:(String)

Getname()

Getroll_no.()

Getcourse()

Course

Student_name:(String)

Course _code(int)

Student_course:(String)

Course_name:(String)

 Getcode()

Getcourse()

Getcousrename()

College

Course_name:(String)

Course_code:(int)

Getcursename()

Getcoursecode()

http://www.ijesrt.com/

[Asodiya, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [785]

Conclusion & future work
Software development is not a process to develop

software only, but it is also about quality. As we

know software is a collection of number of programs,

so it is very difficult for a single developer to solve

such a large or complex problem occurs during

software development Sometimes implementation of

software becomes so large and complex too that is

not remains as writing codes only but it is also about

to follow some guidelines, writing documentation,

and writing unit test. Software testing is the

promising that help us to not only analyzed the

product that will develop but also help us to estimate

the efficiency of that product before code. With the

use of software matrices, the development team can

judge the changes to be made in the application. In

this work we have use only two of the matrices i.e.

class and coupling that help us to judge the

complexity of the code, efficiency, maintenance of

the code. We can partially assure about the reuse of

the code. But if in future we will add two more

matrices i.e. inheritance and polymorphism matrices

than that can help us in more other sequences like

abstraction, reusability, scalability etc.

References
1. S.R.Chidamber and C.F.Kamerer, A metrics

Suite for Object-Oriented Design. IEEE

Trans. Software ngineering, vol. SE-20,

no.6, 476-493, 1994.

2. Shyam R. Chidamber, Chris F. Kemerer, A

METRICS SUITE FOR OBJECT

ORIENTED DESIGN, 1993

3. B.Henderson-sellers, Object-Oriented

Metrics, Measures of Complexity. Prentice

Hall, 1996.

4. R.Harrison, S.J.Counsell, and R.V.Nithi, An

Evaluation of MOOD set of ObjectOriented

Software Metrics. IEEE Trans. Software

Engineering, vol. SE-24, no.6, pp. 491-496

June1998.

5. L.Briand , W.Daly and J. Wust, Unified

Framework for Cohesion Measurement in

Object-Oriented Systems. Empirical

Software Engineering, 3 65-117, 1998.

6. L.Briand , W.Daly and J. Wust, A Unified

Framework for Coupling Measurement in

Object-Oriented Systems. IEEE

Transactions on software Engineering, 25,

91-121,1999.

7. L.Briand , W.Daly and J. Wust, Exploring

the relationships between design measures

and software quality. Journal of Systems and

Software, 5 245-273, 2000.

8. Y.Lee, B.Liang, S.Wu and F.Wang,

Measuring the Coupling and Cohesion of an

Object-Oriented program based on

Information flow, 1995.

9. McCabe & Associates, McCabe Object

Oriented Tool User’s Instructions, 1994.

10. McCabe, T.J. "A Complexity Measure."

IEEE Transactions on Software Engineering

2, 4 (April 1976): 308-320.

http://www.ijesrt.com/

